skip to main content


Search for: All records

Creators/Authors contains: "Tran, N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Globally, zoonotic vector-borne diseases are on the rise and understanding their complex transmission cycles is pertinent to mitigating disease risk. In North America, Lyme disease is the most commonly reported vector-borne disease and is caused by transmission of Borrelia burgdorferi sensu lato (s.l.) from Ixodes spp. ticks to a diverse group of vertebrate hosts. Small mammal reservoir hosts are primarily responsible for maintenance of B. burgdorferi s.l. across the United States. Never- theless, birds can also be parasitized by ticks and are capable of infection with B. burgdorferi s.l. but their role in B. burgdorferi s.l. transmission dynamics is understudied. Birds could be important in both the maintenance and spread of B. burgdorferi s.l. and ticks because of their high mobility and shared habitat with important mammalian reservoir hosts. This study aims to better understand the role of avian hosts in tick-borne zoonotic disease transmission cycles in the western United States. We surveyed birds, mammals, and ticks at nine sites in northern California for B. burgdorferi s.l. infection and collected data on other metrics of host community composition such as abundance and diversity of birds, small mammals, lizards, predators, and ticks. We found 22.8% of birds infected with B. burgdorferi s.l. and that the likelihood of avian B. burgdorferi s.l. infection was significantly associated with local host community composition and pathogen prevalence in California. Addition- ally, we found an average tick burden of 0.22 ticks per bird across all species. Predator and lizard abundances were significant predictors of avian tick infestation. These results indicate that birds are relevant hosts in the local B. burgdorferi s.l. transmission cycle in the western United States and quantifying their role in the spread and maintenance of Lyme disease requires further research. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. We are a year into the development of a software tool for modeling and simulation (M&S) of 1D and 2D kinematics consistent with Newton's laws of motion. Our goal has been to introduce modeling and computational thinking into learning high-school physics. There are two main contributions from an M&S perspective: (1) the use of conceptual modeling, and (2) the application of Finite State Machines (FSMs) to model physical behavior. Both of these techniques have been used by the M&S community to model high-level "soft systems" and discrete events. However, they have not been used to teach physics and represent ways in which M&S can improve physics education. We introduce the NSF-sponsored STEPP project along with its hypothesis and goals. We also describe the development of the three STEPP modules, the server architecture, the assessment plan, and the expected outcomes. 
    more » « less
  5. Abstract

    Hydraulic redistribution is the transport of water from wet to dry soil layers, upward or downward, through plant roots. Often in savanna and woodland ecosystems, deep‐rooted trees, and shallow‐rooted grasses coexist. The degree to which these different species compete for or share soil‐water derived from precipitation or groundwater, as well as how these interactions are altered by hydraulic redistribution, is unknown. We use a multilayer canopy model and field observations to examine how the presence of deep, but tree‐root accessible, groundwater impacts seasonal patterns of hydraulic redistribution, and interaction between coexisting vegetation species in a semiarid riparian woodland (US‐CMW). Based on the simulation, trees absorb moisture at the water table (∼10 m depth) and release it in the shallow soil depth (0–3 m) during the dry pre‐monsoon season. We observed the occurrence of a new convergent hydraulic redistribution pattern during the monsoon season, where moisture is transported from both the near‐surface (0–0.5 m) and the water table to intermediate soil layers (1–5 m) through tree roots. We found that hydraulic redistribution demonstrates a growth facilitation effect at this site, supporting 49% of growing season tree transpiration and 14% of the grass transpiration. Compared to a similarly structured upland savanna without accessible groundwater, the riparian site shows an increased amount of hydraulically redistributed water and more facilitative water use between coexisting grasses and trees. These results shed light on the linkage between accessible groundwater and the role of hydraulic redistribution on the interaction between deep‐rooted and shallow‐rooted vegetation.

     
    more » « less
  6. null (Ed.)
  7. Free, publicly-accessible full text available November 1, 2024
  8. Abstract

    A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at$${\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V}}$$s=13TeVby the CMS experiment at the LHC, corresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$fb-1. The 95% confidence level upper limit set on the branching fraction of the 125$$\,\text {Ge}\hspace{-.08em}\text {V}$$GeVHiggs boson to invisible particles,$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$B(Hinv), is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$B(Hinv)searches carried out at$${\sqrt{s}=7}$$s=7, 8, and 13$$\,\text {Te}\hspace{-.08em}\text {V}$$TeVin complementary production modes. The combined upper limit at 95% confidence level on$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$B(Hinv)is 0.15 (0.08 expected).

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  9. Free, publicly-accessible full text available October 1, 2024